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Abstract
In this paper, based on the well-known sinh-Gordon equation, a new sinh-
Gordon equation expansion method is developed. This method transforms the
problem of solving nonlinear partial differential equations into the problem
of solving the corresponding systems of algebraic equations. With the aid of
symbolic computation, the procedure can be carried out by computer. Many
nonlinear wave equations in mathematical physics are chosen to illustrate the
method such as the KdV-mKdV equation, (2+1)-dimensional coupled Davey–
Stewartson equation, the new integrable Davey–Stewartson-type equation, the
modified Boussinesq equation, (2+1)-dimensional mKP equation and (2+1)-
dimensional generalized KdV equation. As a consequence, many new doubly-
periodic (Jacobian elliptic function) solutions are obtained. When the modulus
m → 1 or 0, the corresponding solitary wave solutions and singly-periodic
solutions are also found. This approach can also be applied to solve other
nonlinear differential equations.

PACS number: 02.30.Jr

1. Introduction

Up to now more and more nonlinear evolution equations were presented which described
the motion of the isolated waves, localized in a small part of space, in many fields such as
hydrodynamic, plasma physics, nonlinear optic, etc. The investigation of exact solutions of
these nonlinear evolution equations is interesting and important. In the past few decades,
many authors had mainly studied soliton solutions of nonlinear wave equations by using
various methods, such as Backlund transformation [1, 5], Darboux transformation [2], inverse
scattering method [3], Hirota’s bilinear method [4], the tanh method [6], the sine–cosine
method [7, 10], the homogeneous balance method [8, 9], the Riccati expansion method with
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constant coefficients [11, 12] or variable coefficients [13], etc. But there were also a few papers
considering the doubly-periodic solutions which were expressed by using the Jacobi elliptic
functions, Weierstrass elliptic function, the Theta functions, etc (see [14–19] and therein).
Some methods were presented to seek the doubly-periodic solutions, such as the Jacobi elliptic
function expansion method [14], the extended Jacobi elliptic function expansion method [15–
17] and the algebraic method [20], etc. When the modulus m → 1 or 0, the Jacobi elliptic
functions degenerate as soliton solutions and trigonometric function solutions. Therefore,
seeking the Jacobi elliptic function solutions of nonlinear wave equations is significant.

In order to seek more types of the Jacobi elliptic function solutions, in this paper, we would
like to develop a transformation from the sinh-Gordon equation [1] which reveals a relationship
between differential nonlinear wave equations. The transformation and sinh-Gordon equation
are used to construct Jacobi elliptic function solutions of nonlinear wave equations. Under the
transformation u(x, t) = u(ξ), ξ = k(x − λt), the famous sinh-Gordon equation

∂2φ

∂x∂t
= α sinh φ (1)

which appears in many branches of nonlinear science [1], where α is a constant, reduces to an
ordinary differential equation

d2φ

dξ2
= − α

kλ
sinh φ (2)

where k and λ are the wave number and wave speed, respectively. Integrating (2) once yields(
d

dξ

1

2
φ

)2

= − α

kλ
sinh2

(
1

2
φ

)
+ c (3)

with integration constant c. If we set c = 0,− α
kλ

= 1, 1
2φ = w, then (3) becomes

dw(ξ)

dξ
= sinh w(ξ). (4)

By using the solution of the equation (4), one can seek soliton solutions of nonlinear equations.
In this paper we would like to consider the case c �= 0. In order to use (3) conveniently,

we set φ = 2w,− α
kλ

= 1, thus (3) reduces to(
dw

dξ

)2

= sinh2 w + c or
dw

dξ
=

√
sinh2 w + c (5)

which is useful in the following method, where c is a constant of integration.
If we take c = 1 − m2, where m (0 < m < 1) is the modulus of the Jacobi elliptic

functions [18], then we know that (5) with c = 1 − m2 has the general solution

sinh[w(ξ)] = cs(ξ; m) (6a)

or

cosh[w(ξ)] = ns(ξ; m) (6b)

which are Jacobi elliptic functions and have the properties

d cs(ξ; m)

dξ
= −ns(ξ; m)ds(ξ; m)

d ns(ξ; m)

dξ
= −cs(ξ; m) ds(ξ; m)

ns2(ξ; m) = 1 + cs2(ξ; m).

(7)

In what follows we would like to use the solution (6) of (5) to construct Jacobi elliptic function
solutions of nonlinear wave equations.
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The rest of this paper is arranged as follows. In section 2 we give the computational
steps of method I, which is used for nonlinear ODEs with constant coefficients and nonlinear
PDEs that can reduce to nonlinear ODEs with constant coefficients, and method II, which is
used for nonlinear ODEs and nonlinear PDEs. In section 3 we use method I to construct the
doubly-periodic solutions of some complex nonlinear wave equations in (1+1)-dimensional
and (2+1)-dimensionalspaces, such as the combined KdV-mKdV equation, (2+1)-dimensional
coupled Davey–Stewartson equation, the new integrable Davey–Stewartson-type equation, the
modified Boussinesq equation, (2+1)-dimensional mKP equation and the (2+1)-dimensional
generalized KdV equation. Finally, we give some conclusions in section 4.

2. The sinh-Gordon equation expansion method and its algorithm

2.1. Method I—seeking the travelling wave type of Jacobi elliptic function solutions

For a given nonlinear partial differential equation, say, in two variables x, t

F (u, ut , ux, uxx , uxt , utt , . . .) = 0 (8)

we seek its travelling wave solution, if available, in the form u(x, t) = u(ξ), ξ = k(x − λt).
By using the new variable w = w(ξ), we assume that (8) has the solution in the form

u(ξ) = u(w(ξ)) = A0 +
n∑

i=1

coshi−1 w[Ai sinh w + Bi cosh w] (9)

where Ai (i = 0, 1, . . . , n), Bj (j = 1, 2, . . . , n) are constants to be determined later and
w = w(ξ) satisfies (5).

According to (7) and (9), we define a polynomial degree function as D(u(w)) = n, thus
we have

D

(
up(w)

(
dsu(w)

dξs

)q)
= np + q(n + s). (10)

Therefore, we can determine the parameter n by balancing the highest order derivative term
with nonlinear terms in (8).

The method is summed up as the following steps:

Step 1. Reduce the given nonlinear equation to an ODE by using the travelling wave
transformation u(x, t) = u(ξ), ξ = k(x − λt).
Step 2. Determine the parameter n in (9) by balancing the highest order derivative terms
and nonlinear terms and thus give the formal solution (9). (Remark: If n is not a positive
integer, then we first make the transformation u = vn, and then perform the second step
again.)
Step 3. Substitute (9) with the known n along with (5) into the obtained ODE and obtain
a hyperbolic polynomial for w′s sinhi w coshj w (i = 0, 1; s = 0, 1; j = 0, 1, 2, . . .).
Step 4. Set to zero the coefficients of w′s sinhi w coshj w (i = 0, 1; s = 0, 1; j =
0, 1, 2, . . .) to get a set of algebraic equations with respect to the unknowns k, λ,Aj (j =
0, 1, . . . , n) and Bj (j = 1, 2, . . . , n).
Step 5. Solve the set of algebraic equations, which may not be consistent, and finally
derive the doubly-periodic solutions of the given nonlinear equations by using the
u(x, t) = u(ξ), ξ = k(x − λt) and the known solution (6).

Remark 1. This method is an indirect method which is used to find Jacobi elliptic function
solutions of equations by using a transformation (9) and the target equation (5) with c = 1−m2
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whose solutions are known. Based on the symbolic computation, the procedure can be carried
out by computer.

Remark 2. Because when m → 1, cs(ξ; m) → csch ξ and ns(ξ; m) → coth ξ ; while
m → 0, cs(ξ; m) → cot ξ and ns(ξ; m) → csc ξ , thus it is easy to see that the method is used
to obtain both soliton solutions and Jacobi elliptic function solutions.

2.2. Method II—seeking the non-travelling wave type of Jacobi elliptic function solutions

We know that method I is only used for these nonlinear ODEs with constant coefficients or
nonlinear partial differential equations that can be reduced to be the corresponding ODEs with
constant coefficients by using some transformations, otherwise method I will not work. In
order to overcome the disadvantage of method I, we change it into a general form as follows.

If we set ξ → ψ(x, t), then (5) becomes(
dw(ψ)

dψ

)2

= sinh2 w(ψ) + c or
dw(ψ)

d ψ
=

√
sinh2 w(ψ) + c (11)

where c is a constant of integration and ψ(x, t) is an unknown function of x, t .
If we set c = 1 − m2 (0 < m < 1), then by solving (11), we know that it has the solution

sinh[w(ψ)] = cs[ψ(x, t); m] (12a)

cosh[w(ψ)] = ns[ψ(x, t); m]. (12b)

For the given nonlinear partial differential equation (8), we do not need to first make the
travelling wave transformation to reduce (8) to an ODE with constant coefficients. We can
directly assume that (8) has the generalized formal solution

u(x, t) = A0(x, t) +
n∑

i=1

coshi−1 w(ψ)[Ai(x, t) sinh w(ψ) + Bi(x, t) cosh w(ψ)] (13)

where the w = w(ψ) satisfies (11) with c = 1 − m2, and Ai(x, t), Bj (x, t) and ψ(x, t) are
functions to be determined later. Similar to the steps mentioned in method I, substituting (13)
with (11) into (8) yields a set of differential equations w.r.t. Ai, Bi and ψ . By solving the
set of differential equations, if available, and using (12), we can obtain more Jacobi elliptic
function solutions. When the modulus m → 1 or 0, we may obtain soliton-like solutions and
more types of singly-periodic solutions.

Remark 3. If we take ψ(x, t) to be of the form ψ(x, t) = ξ = k(x − λt) (k, λ constants),
then method II reduces to method I. But if we can obtain the case that the function ψ(x, t) is
not of the linearly combined form of x and t, then we will have new Jacobi elliptic function
solutions of (8).

Remark 4. We know that method I transforms (8) into a system of nonlinear algebraic
equations (SNAEs) with respect to unknown variables. But method II transforms (8) into a
system of nonlinear partial differential equations (SNPDEs) with respect to unknown variables.
Generally speaking, solving the SNPDEs is more difficult than the SNAEs. Thus, method II
is more complicated than method I.

Recently, we have found new Jacobi elliptic function solutions of some simple nonlinear
equations [21]. In what follows we would like to apply method I to some more complicated
nonlinear equations, such as the combined KdV-mKdV equation, (2+1)-dimensional coupled
Davey–Stewartson equation and (2+1)-dimensional generalized KdV equation, etc. As a
consequence, some new Jacobi elliptic function solutions are obtained.



Jacobi elliptic function solutions via the new sinh-Gordon equation expansion method 1965

3. Some examples to illustrate method I and their solutions

In this section we illustrate method I using some nonlinear wave equations.

Example 3.1. The KdV-mKdV equation [1]

ut + (α + βu)uux + uxxx = 0. (14)

According to step 1, under the travelling wave transformation u(x, t) = u(ξ), ξ = k(x − λt),
(7) reduces to

C − λu +
1

2
αu2 +

1

3
βu3 + k2 d2u

dξ2
= 0 (15)

where C is the integration constant. Fan [20] gave some exact solutions. In what follows we
will give other types of Jacobi elliptic function solutions.

According to step 2, we assume that it has the solution

u(ξ) = A0 + A1 sinh w(ξ) + B1 cosh w(ξ) (16)

and w satisfying (4), ξ = k(x − λt).
With the aid of Maple, substituting (16) into (15) along with (5), we have the polynomial

of w′s sinhi w coshj w. Setting their coefficients to zero yields a set of algebraic equations

1/3βB3
1 + 2B1k

2 + βA2
1B1k = 0

βB2
1A1 + 1/3βA3

1 + 2A1k
2 − 0

βA0B
2
1 + 1/2αA2

1 + 1/2αB2
1 + βA0A

2
1 = 0

A1k
2c − A1λ + αA0A1 + βA2

0A1 − 1/3βA3
1 − A1k

2 = 0

−2B1k
2 − B1λ + αA0B1 − βA2

1B1 + B1k
2c + βA2

0B1 = 0

αA1B1 + 2βA0A1B1 = 0

−1/2αA2
1 − λA0 + C − βA0A

2
1 + 1/2αA2

0 + 1/3βA3
0.

(17)

From the above we have

A0 = − α

2β
A1 = 0 B1 = ±

√
6(4λβ + α2)

4β2(1 + m2)
k = ±

√
− 4λβ + α2

4β(1 + m2)
(18)

A0 = − α

2β
B1 = 0 A1 = ±

√
− 6(4λβ + α2)

4β2(2 − m2)
k = ±

√
4λβ + α2

4β(2 − m2)
(19)

A0 = − α

2β
A2

1 = B2
1 A1 = ±

√
3(4λβ + α2)

4β2(2m2 − 1)
k = ±

√
− 4λβ + α2

2β(1 − 2m2)
. (20)

Therefore, we have three new Jacobi elliptic function solutions

u1 = − α

2β
±

√
6(4λβ + α2)

4β2(1 + m2)
cs




√
− 4λβ + α2

4β(1 + m2)
ξ


 (21)

u2 = − α

2β
±

√
− 6(4λβ + α2)

4β2(2 − m2)
ns




√
4λβ + α2

4β(2 − m2)
ξ


 (22)
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u3 = − α

2β
±

√
3(4λβ + α2)

4β2(2m2 − 1)
[cs(kξ) ± ns(kξ)] k =

√
− 4λβ + α2

2β(1 − 2m2)
. (23)

In particular

(1) when the modulus m → 1, we have the soliton solutions from (21)–(23):

u4 = − α

2β
±

√
3(4λβ + α2)

4β2
csch




√
−4λβ + α2

8β
ξ




u5 = − α

2β
±

√
−6(4λβ + α2)

4β2
coth




√
4λβ + α2

4β
ξ




u6 = − α

2β
±

√
3(4λβ + α2)

4β2
[csch(kξ) ± coth(kξ)] k =

√
4λβ + α2

2β

which are singular soliton solutions that imply that for the certain time t = t0, these
solutions blow up at the point x = x0.

(2) when the modulus m → 0, we have the singly-periodic solutions from (21)–(23):

u7 = − α

2β
±

√
6(4λβ + α2)

4β2
cot




√
−4λβ + α2

4β
ξ




u8 = − α

2β
±

√
−6(4λβ + α2)

8β2
csc




√
4λβ + α2

8β
ξ




u9 = − α

2β
±

√
−3(4λβ + α2)

4β2
[csc(kξ) ± cot(kξ)] k =

√
−4λβ + α2

2β
.

Example 3.2. (2+1)-dimensional coupled Davey–Stewartson equation [1, 22]

i ut + uxx − uyy − 2|u|2u − 2uv = 0
vxx + vyy + 2(|u|)2)xx = 0.

(24)

Fan [20] gave three Jacobi elliptic function solutions. In what follows we will obtain other
types of Jacobi elliptic function solutions. We first introduce the transformations

u(x, t) = exp(iη)u(ξ) v(x, t) = v(ξ) η = αx + βy + γ t ξ = k(x + py − λt)

(25)

where α, β, γ, k, p, λ are constants to be determined later.
Substituting (25) into (24) we have

k2(1 − p2)u′′ + (−γ − α2 + β2)u − 2u3 − 2uv = 0
(1 + p2)v′′ + 2(u2)′′ = 0

λ = 2(α − βp).

(26)

Assume that (26) has the solutions, by using method I,

u(ξ) = A0 + A1 sinh w + B1 cosh w

v(ξ) = a0 + a1 sinh w + b1 cosh w + a2 sinh w cosh w + b2 cosh2 w
(27)
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where A0, A1, B1, a0, a1, a2, b1, b2 are constants to be determined later. According to the
steps 3–5 in method I, we have the three new Jacobi elliptic function solutions:

u1 = k
√

1 + p2 exp(iη)csξ v1 = −2k2cs2ξ +
C

1 + p2
(28)

where η = αx + βy + γ t, ξ = k(x + py − 2(α − pβ)t), k =
√

2C/(1+p2)+γ +α2−β2

(2−m2)(1−p2)
and C is an

arbitrary constant.

u2 = k
√

1 + p2 exp(iη)nsξ v2 = −2k2ns2ξ +
C

1 + p2
(29)

where η = αx + βy + γ t, ξ = k(x + py − 2(α − pβ)t), k =
√

2C/(1+p2)+γ +α2−β2

(1+m2)(p2−1)
and C is an

arbitrary constant.

u3 = 1

2
k
√

1 + p2 exp(iη)[csξ ± nsξ ] v3 = −k2[cs2ξ ± csξ nsξ ] − 1

2
k2 +

C

1 + p2
(30)

where η = αx + βy + γ t, ξ = k(x + py − 2(α − pβ)t), k =
√

2(2C/(q+p2)+γ +α2−β2)

(1−2m2)(1−p2)
and C is an

arbitrary constant.

Similar to example 1, when the modulus m → 1 or 0, we can also get the soliton
solutions and singly-periodic solutions. We omit them here.

Example 3.3. The new integrable Davey–Stewartson-type equation [23]

i
τ + L1
 + 
� + 
χ = 0
L2χ = L3|
|2
�ξ = χη + µ(|
|2)η µ = ∓1

(31)

where the linear differential operators are given by

L1 = b2 − a2

4

∂2

∂ξ2
− a

∂2

∂ξ∂η
− ∂2

∂η2
(32a)

L2 = b2 + a2

4

∂2

∂ξ2
+ a

∂2

∂ξ∂η
+

∂2

∂η2
(32b)

L3 = ±1

4

(
b2 + a2 +

8b2(a − 1)

(a − 2)2 − b2

)
∂2

∂ξ2
±

(
a +

2b2

(a − 2)2 − b2

)
∂2

∂ξ∂η
± ∂2

∂η2
(32c)

where a, b are real parameters, and 
 = 
(ξ, η, τ ) is complex while � = �(ξ, η, τ ), χ =
χ(ξ, η, τ ) are real. This equation was presented first by Maccari [23] from the Konopelchenko–
Dubrovsky (KD) equation [24] by using the reduction method.

We first introduce the transformations

(ξ, η, τ ) = 
(X) exp(iY ) �(ξ, η, τ ) = �(X) χ(ξ, η, τ ) = χ(X)

X = kZ = k(ξ + lη + λτ) Y = αξ + βη + γ τ
(33)

where k, l, λ, α, β, γ are constants to be determined later.
Substituting (33) into (31), we have

k2M1
d2
(X)

dX2
+ M0
(X) + 
(X)�(X) + 
(X)χ(X) = 0

k2M2
d2χ(X)

dX2
= k2M3

d2
2(X)

dX2

k
d�(X)

dX
= kl

dχ(X)

dX
+ µkl

d
2(X)

dX

(34a)
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under the condition

λ = −α

4
(b2 − a2) + a(β + αl) + 2lβ (34b)

where

M0 = −γ − 1

4
α2(b2 − a2) + aαβ + β2

M1 = b2 − a2

4
− al − l2 M2 = b2 + a2

4
+ al + l2 (35)

M3 = ±1

4

(
b2 + a2 +

8b2(a − 1)

(a − 2)2 − b2

)
±

(
a +

2b2

(a − 2)2 − b2

)
l ± l2.

According to method I, we assume that (34a) has the solution in the form


(X) = A0 + A1 sinh w + B1 cosh w

�(ξ) = a0 + a1 sinh w + b1 cosh w + a2 sinh w cosh w + b2 cosh2 w

χ(ξ) = e0 + e1 sinh w + f1 cosh w + e2 sinh w cosh w + f2 cosh2 w

(36)

where A0, A1, B1, a0, a1, a2, b1, b2, e0, e1, e2, f1, f2 are constants to be determined later.
According to the steps 3–5 in method I, we have the three new Jacobi elliptic function
solutions:


1 =
√

− 2(M0 + c1 + lc1 + c2)M2

(1 + m2)(M3 + lM3 + µlM2)
ns




√
M0 + c1 + lc1 + c2

(1 + m2)M1
Z


 exp(iY ) (37a)

χ1 = − 2M3(M0 + c1 + lc1 + c2)

(1 + m2)(M2 + lM2 + µlM3)
ns2




√
M0 + c1 + lc1 + c2

(1 + m2)M1
Z


 + c1 (37b)

�1 = − 2(M0 + c1 + lc1 + c2)M2

(1 + m2)(M3 + lM3 + µlM2)

(
lM3

M2
+ µl

)
ns2




√
M0 + c1 + lc1 + c2

(1 + m2)M1
Z


 + lc1 + c2

(37c)


2 =
√

− 2(M0 + c1 + lc1 + c2)M2

(m2 − 2)(M3 + lM3 + µlM2)
cs




√
M0 + c1 + lc1 + c2

(m2 − 2)M1
Z


 exp(iY ) (38a)

χ2 = − 2M3(M0 + c1 + lc1 + c2)

(m2 − 2)(M2 + lM2 + µlM3)
cs2




√
M0 + c1 + lc1 + c2

(m2 − 2)M1
Z


 + c1 (38b)

�2 = − 2(M0 + c1 + lc1 + c2)M2

(m2 − 2)(M3 + lM3 + µlM2)

(
lM3

M2
+ µl

)
cs2




√
M0 + c1 + lc1 + c2

(m2 − 2)M1
Z


 + lc1 + c2

(38c)


3 =
√

− (M0 + c1 + lc1 + c2)M2

(2m2 − 1)(M3 + lM3 + µlM2)


ns




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z




± cs




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z





 exp(iY ) (39a)
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χ3 = − (M0 + c1 + lc1 + c2)M3

(2m2 − 1)(M3 + lM3 + µlM2)


2cs2




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z


 + 1

± 2ns




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z


 cs




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z




 + c1

(39b)

�3 = − (M0 + c1 + lc1 + c2)M2

(2m2 − 1)(M3 + lM3 + µlM2)

(
lM3

M2
+ µl

)
2cs2




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z


 + 1

± 2ns




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z


 cs




√
2(M0 + c1 + lc1 + c2)

(2m2 − 1)M1
Z




 + lc1 + c2

(39c)

where c1 and c2 are constants.

Example 3.4. The modified Boussinesq equation [25]

Pt =
(

Q − 3

2
k2P 2

)
x

Qt = −3k2(Pxx − PQ + k2P 3)x

(40)

where k is a constant.
Under the travelling wave transformation

P(x, t) = P(ξ) Q(x, t) = Q(ξ) ξ = α(x + λt) (41)

(40) reduces to

λ
dP

dξ
= dQ

dξ
− 3

2
k2 dP 2

dξ

λ
dQ

dξ
= −3k2

(
α2 d3P

dξ3
− d(PQ)

dξ
+ k2 dP 3

dξ

)
.

(42)

Assume that (42) has the solutions, by using method I,

P(ξ) = A0 + A1 sinh w + B1 cosh w

Q(ξ) = a0 + a1 sinh w + b1 cosh w + a2 sinh w cosh w + b2 cosh2 w
(43)

where A0, A1, B1, a0, a1, a2, b1, b2 are constants to be determined later. According to the
steps 3–5 in method I, we have the three new Jacobi elliptic function solutions:

P1 =
√

2(λ2 − 2k2c1)

k4(1 + m2)
ns




√
λ2 − 2k2c1

2k2(1 + m2)
(x + λt)


 − λ

3k2
(44a)

Q1 = 3(λ2 − 2k2c1)

k2(1 + m2)
ns2




√
λ2 − 2k2c1

2k2(1 + m2)
(x + λt)


 − λ2

6k2
+ c1 (44b)

P2 =
√

2(λ2 − 2k2c1)

k4(m2 − 2)
cs




√
λ2 − 2k2c1

2k2(m2 − 2)
(x + λt)


 − λ

3k2
(45a)
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Q2 = 3(λ2 − 2k2c1)

k2(m2 − 2)
cs2




√
λ2 − 2k2c1

2k2(m2 − 2)
(x + λt)


 − λ2

6k2
+ c1 (45b)

P3 =
√

λ2 − 2k2c1

k4(2m2 − 1)


ns




√
λ2 − 2k2c1

k2(2m2 − 1)
(x + λt)


 ± cs



√

λ2 − 2k2c1

k2(2m2 − 1)
(x + λt)




 − λ

3k2

(46a)

Q3 = 3(λ2 − 2k2c1)

2k2(2m2 − 1)


2cs2




√
λ2 − 2k2c1

k2(2m2 − 1)
(x + λt)


 ± 2ns




√
λ2 − 2k2c1

k2(2m2 − 1)
(x + λt)




× cs




√
λ2 − 2k2c1

k2(2m2 − 1)
(x + λt)


 + 1


 − λ2

6k2
+ c1 (46b)

where c1 is a constant.

Example 3.5. (2+1)-dimensional mKP equation [24, 26]

qt + 1
8

(
qxxx − 6q2qx + 6qx∂

−1
x qy + 3∂−1

x qyy

) = 0. (47)

Dai [26] used a direct method to decompose (47) into two (1+1)-dimensional soliton equations.
By using the Darbooux transformation of the two (1+1)-dimensional soliton equations, some
soliton solutions of (47) were obtained. In what follows we consider its Jacobi elliptic function
solutions.

According to method I, we can obtain three new Jacobi elliptic function solutions of (47):

q1 =
√

9/2l2 + 8λ

1 + m2
ns




√
9/2l2 + 8λ

1 + m2
(x + ly + λt)


 +

1

2
l (48)

q2 =
√

9/2l2 + 8λ

m2 − 2
cs




√
9/2l2 + 8λ

m2 − 2
(x + ly + λt)


 +

1

2
l (49)

q3 =
√

9/2l2 + 8λ

2(2m2 − 1


ns




√
9l2 + 16λ

2m2 − 1
(x + ly + λt)


 ± cs



√

9l2 + 16λ

2m2 − 1
(x + ly + λt)




 +

1

2
l.

(50)

Example 3.6. The (2+1)-dimensional generalized KdV equation [27]

ut + a1uxxx + a2uyyy + a3ux + a4uy − 3a1
(
u∂−1

y ux

)
x
− 3a2

(
u∂−1

x uy

)
y

= 0 (51)

which is obtained by Boiti [27] forms the general equation, where ai (i = 1, 2, 3, 4) are
constants. When a3 = a4 = 0, (22) reduces to the Nizhhnik–Novikov–Veselov equation [28].

According to the above-mentioned method I, we can obtain two new types of Jacobi
elliptic function solutions

u1 = 2k2p cs2ξ − p(a4p − λ + (4a2k
2p3 + 4a1k

2)(2 − m2) + a3)

6(a1 + a2p3)
(52)



Jacobi elliptic function solutions via the new sinh-Gordon equation expansion method 1971

u2 = k2p[cs2ξ ± cs ξnsξ ] +
1

2
k2p − p(a4p − λ + (2a2k

2p3 + 2a1k
2)(1 − 2m2) + a3)

6(a1 + a2p3)
. (53)

Similar to example 1, when the modulus m → 1 or 0, we can also get the soliton solutions
and singly-periodic solutions:

u3 = 2k2p csch2 ξ − p(a4p − λ + 4a2k
2p3 + 4a1k

2 + a3)

6(a1 + a2p3)
(54)

u4 = 2k2p cot2 ξ − p(a4p − λ + 8a2k
2p3 + 8a1k

2 + a3)

6(a1 + a2p3)
(55)

u5 = k2p[csch2 ξ ± csch ξ coth ξ ] +
1

2
k2p − p(a4p − λ − (2a2k

2p3 + 2a1k
2) + a3)

6(a1 + a2p3)
(56)

u6 = k2p[cot2 ξ ± csc ξ cot ξ ] +
1

2
k2p − p(a4p − λ + (2a2k

2p3 + 2a1k
2) + a3)

6(a1 + a2p3)
(57)

where ξ = k(x + py − λt).

4. Conclusions

In summary, based on the second-order sinh-Gordon equation, we have developed a new
method (called the sinh-Gordon equation expansion method). Method I is used on the
combined KdV-mKdV equation, (2+1)-dimensional coupled Davey–Stewartson equation, the
new integrable Davey–Stewartson-type equation, a modified Boussinesq equation, (2+1)-
dimensional mKP equation and the (2+1)-dimensional generalized KdV equation such that
some new solutions are obtained. When the modulus m → 1 or 0, the corresponding solitary
waves and singly periodic solutions are also found. Therefore, it is easily seen that the
method is simple and powerful and can be carried out by computer with the aid of symbolic
computation. But we know that method I is only used on these nonlinear ODEs with constant
coefficients and nonlinear PDEs that can reduce to nonlinear ODEs with constant coefficients.
If method I does not work for some nonlinear differential equations, then we may use
method II to solve them. When one applies method II to nonlinear differential equations,
it is complex to solve. Sometimes we may not obtain more results by using method II than
method I. Examples of applications of method II will be given in the future.
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